采樣定理,又稱香農采樣定理,奈奎斯特采樣定理,是信息論,特別是通訊與信號處理學科中的一個重要基本結論。E. T. Whittaker(1915年發表的統計理論),克勞德·香農 與Harry Nyquist都對它作出了重要貢獻。另外,V. A. Kotelnikov 也對這個定理做了重要貢獻。
在進行模擬/數字信號的轉換過程中,當采樣頻率fs.max大于信號中最高頻率fmax的2倍時(fs.max>=2fmax),采樣之后的數字信號完整地保留了原始信號中的信息,一般實際應用中保證采樣頻率為信號最高頻率的5~10倍;采樣定理又稱奈奎斯特定理。
1924年奈奎斯特(Nyquist)就推導出在理想低通信道的最高碼元傳輸速率的公式:
理想低通信道的最高碼元傳輸速率B=2W Baud (其中W是理想)
理想信道的極限信息速率(信道容量)
C = B * log2 N ( bps )
采樣過程所應遵循的規律,又稱取樣定理、抽樣定理。采樣定理說明采樣頻率與信號頻譜之間的關系,是連續信號離散化的基本依據。采樣定理是1928年由美國電信工程師H.奈奎斯特首先提出來的,因此稱為奈奎斯特采樣定理。1933年由蘇聯工程師科捷利尼科夫首次用公式嚴格地表述這一定理,因此在蘇聯文獻中稱為科捷利尼科夫采樣定理。1948年信息論的創始人C.E.香農對這一定理加以明確地說明并正式作為定理引用,因此在許多文獻中又稱為香農采樣定理。采樣定理有許多表述形式,但最基本的表述方式是時域采樣定理和頻域采樣定理。采樣定理在數字式遙測系統、時分制遙測系統、信息處理、數字通信和采樣控制理論等領域得到廣泛的應用。
時域采樣定理
頻帶為F的連續信號 f(t)可用一系列離散的采樣值f(t1),f(t1±Δt),f(t1±2Δt),...來表示,只要這些采樣點的時間間隔Δt≤1/2F,便可根據各采樣值完全恢復原來的信號f(t)。 這是時域采樣定理的一種表述方式。
時域采樣定理的另一種表述方式是:當時間信號函數f(t)的最高頻率分量為fM時,f(t)的值可由一系列采樣間隔小于或等于1/2fM的采樣值來確定,即采樣點的重復頻率f≥2fM。圖為模擬信號和采樣樣本的示意圖。
時域采樣定理是采樣誤差理論、隨機變量采樣理論和多變量采樣理論的基礎。
頻域采樣定理
對于時間上受限制的連續信號f(t)(即當│t│>T時,f(t)=0,這里T=T2-T1是信號的持續時間),若其頻譜為F(ω),則可在頻域上用一系列離散的采樣值 來表示,只要這些采樣點的頻率間隔ω≦π / tm
更多文章